iOS面试

数据结构

转载自做了5年iOS,靠着这份面试题跟答案,我从12K变成了30K

数据结构的存储一般常用的有几种?各有什么特点?

数据结构的存储一般常用的有两种 顺序存储结构 和 链式存储结构

堆、栈和队列 分别是什么?

  • 堆是一种经过排序的树形数据结构,每个节点都有一个值,通常我们所说的堆的数据结构是指二叉树。所以堆在数据结构中通常可以被看做是一棵树的数组对象。而且堆需要满足一下两个性质:

    1)堆中某个节点的值总是不大于或不小于其父节点的值;

    2)堆总是一棵完全二叉树。

  • 堆分为两种情况,有最大堆和最小堆。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆,在一个摆放好元素的最小堆中,父结点中的元素一定比子结点的元素要小,但对于左右结点的大小则没有规定谁大谁小。

  • 堆常用来实现优先队列,堆的存取是随意的,这就如同我们在图书馆的书架上取书,虽然书的摆放是有顺序的,但是我们想取任意一本时不必像栈一样,先取出前面所有的书,书架这种机制不同于箱子,我们可以直接取出我们想要的书。

  • 栈是限定仅在表尾进行插入和删除操作的线性表。我们把允许插入和删除的一端称为栈顶,另一端称为栈底,不含任何数据元素的栈称为空栈。栈的特殊之处在于它限制了这个线性表的插入和删除位置,它始终只在栈顶进行。
  • 栈是一种具有后进先出的数据结构,又称为后进先出的线性表,简称 LIFO(Last In First Out)结构。也就是说后存放的先取,先存放的后取,这就类似于我们要在取放在箱子底部的东西(放进去比较早的物体),我们首先要移开压在它上面的物体(放进去比较晚的物体)。
  • 堆栈中定义了一些操作。两个最重要的是PUSH和POP。PUSH操作在堆栈的顶部加入一个元素。POP操作相反,在堆栈顶部移去一个元素,并将堆栈的大小减一。
  • 栈的应用—递归

队列

  • 队列是只允许在一端进行插入操作、而在另一端进行删除操作的线性表。允许插入的一端称为队尾,允许删除的一端称为队头。它是一种特殊的线性表,特殊之处在于它只允许在表的前端进行删除操作,而在表的后端进行插入操作,和栈一样,队列是一种操作受限制的线性表。
  • 队列是一种先进先出的数据结构,又称为先进先出的线性表,简称 FIFO(First In First Out)结构。也就是说先放的先取,后放的后取,就如同行李过安检的时候,先放进去的行李在另一端总是先出来,后放入的行李会在最后面出来.

单向链表 双向链表 循环链表

单向链表 A->B->C->D->E->F->G->H. 这就是单向链表 H 是头 A 是尾 像一个只有一个头的火车一样 只能一个头拉着跑

双向链表, 含两个指针, next prev

循环链表是与单向链表一样,是一种链式的存储结构,所不同的是,循环链表的最后一个结点的指针是指向该循环链表的第一个结点或者表头结点,从而构成一个环形的链。发挥想象力 A->B->C->D->E->F->G->H->A. 绕成一个圈。就像蛇吃自己的这就是循环 不需要去死记硬背哪些理论知识。

数组和链表区别

数组元素在内存上连续存放,可以通过下标查找元素;插入、删除需要移动大量元素,比较适用于元素很少变化的情况

链表中的元素在内存中不是顺序存储的,查找慢,插入、删除只需要对元素指针重新赋值,效率高

输入一棵二叉树的根结点,求该树的深度?

1
2
3
4
5
6
7
8
9
int TreeDepth(TreeNode* pRoot)
{
if(pRoot == nullptr)
return 0;
int left = TreeDepth(pRoot->left);
int right = TreeDepth(pRoot->right);

return (left>right) ? (left+1) : (right+1);
}

输入一课二叉树的根结点,判断该树是不是平衡二叉树?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
			struct TreeNode{
int val;
TreeNode* left;
TreeNode* right;
};

int TreeDepth(TreeNode* pRoot){
if(pRoot==NULL)
return 0;
int left=TreeDepth(pRoot->left);
int right=TreeDepth(pRoot->right);
return left>right?(left+1):(right+1);
}

bool IsBalanced(TreeNode* pRoot){
if(pRoot==NULL)
return true;
int left=TreeDepth(pRoot->left);
int right=TreeDepth(pRoot->right);
int diff=left-right;
if(diff>1 || diff<-1)
return false;
return IsBalanced(pRoot->left) && IsBalanced(pRoot->right);
}

算法

链表反转(头差法)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
struct Node* reverseList(struct Node *head)
{
// 定义遍历指针,初始化为头结点
struct Node *p = head;

// 反转后的链表头部
struct Node *newH = NULL;

// 遍历链表
while (p != NULL) {

// 记录下一个结点
struct Node *temp = p->next;
// 当前结点的next指向新链表头部
p->next = newH;
// 更改新链表头部为当前结点
newH = p;
// 移动p指针
p = temp;
}

// 返回反转后的链表头结点
return newH;
}

如何查找第一个只出现一次的字符(Hash查找)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
char findFirstChar(char* cha)
{
char result = '\0';

// 定义一个数组 用来存储各个字母出现次数
int array[256];

// 对数组进行初始化操作
for (int i=0; i<256; i++) {
array[i] =0;
}
// 定义一个指针 指向当前字符串头部
char* p = cha;
// 遍历每个字符
while (*p != '\0') {
// 在字母对应存储位置 进行出现次数+1操作
array[*(p++)]++;
}

// 将P指针重新指向字符串头部
p = cha;
// 遍历每个字母的出现次数
while (*p != '\0') {
// 遇到第一个出现次数为1的字符,打印结果
if (array[*p] == 1)
{
result = *p;
break;
}
// 反之继续向后遍历
p++;
}

return result;
}

如何查找两个子视图的共同父视图?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
- (NSArray <UIView *> *)findCommonSuperView:(UIView *)viewOne other:(UIView *)viewOther
{
NSMutableArray *result = [NSMutableArray array];

// 查找第一个视图的所有父视图
NSArray *arrayOne = [self findSuperViews:viewOne];
// 查找第二个视图的所有父视图
NSArray *arrayOther = [self findSuperViews:viewOther];

int i = 0;
// 越界限制条件
while (i < MIN((int)arrayOne.count, (int)arrayOther.count)) {
// 倒序方式获取各个视图的父视图
UIView *superOne = [arrayOne objectAtIndex:arrayOne.count - i - 1];
UIView *superOther = [arrayOther objectAtIndex:arrayOther.count - i - 1];

// 比较如果相等 则为共同父视图
if (superOne == superOther) {
[result addObject:superOne];
i++;
}
// 如果不相等,则结束遍历
else{
break;
}
}

return result;
}

- (NSArray <UIView *> *)findSuperViews:(UIView *)view
{
// 初始化为第一父视图
UIView *temp = view.superview;
// 保存结果的数组
NSMutableArray *result = [NSMutableArray array];
while (temp) {
[result addObject:temp];
// 顺着superview指针一直向上查找
temp = temp.superview;
}
return result;
}

无序数组中的中位数(快排思想)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
int findMedian(int a[], int aLen)
{
int low = 0;
int high = aLen - 1;

int mid = (aLen - 1) / 2;
int div = PartSort(a, low, high);

while (div != mid)
{
if (mid < div)
{
//左半区间找
div = PartSort(a, low, div - 1);
}
else
{
//右半区间找
div = PartSort(a, div + 1, high);
}
}
//找到了
return a[mid];
}

int PartSort(int a[], int start, int end)
{
int low = start;
int high = end;

//选取关键字
int key = a[end];

while (low < high)
{
//左边找比key大的值
while (low < high && a[low] <= key)
{
++low;
}

//右边找比key小的值
while (low < high && a[high] >= key)
{
--high;
}

if (low < high)
{
//找到之后交换左右的值
int temp = a[low];
a[low] = a[high];
a[high] = temp;
}
}

int temp = a[high];
a[high] = a[end];
a[end] = temp;

return low;
}

如何给定一个整数数组和一个目标值,找出数组中和为目标

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
- (BOOL)twoNumSumWithTarget:(int)target Array:(NSArray<NSNumber *> *)array {

NSMutableArray *finalArray = [NSMutableArray array];

for (int i = 0; i < array.count; i++) {

for (int j = i + 1; j < array.count; j++) {

if ([array[i] intValue] + [array[j] intValue] == target) {

[finalArray addObject:array[i]];
[finalArray addObject:array[j]];
NSLog(@"%@",finalArray);

return YES;
}
}
}
return NO;
}

内存管理

什么情况使用weak关键字,相比assign有什么不同?

  • 什么情况使用 weak 关键字?

在 ARC 中,在有可能出现循环引用的时候,往往要通过让其中一端使用 weak 来解决,比如: delegate 代理属性

自身已经对它进行一次强引用,没有必要再强引用一次,此时也会使用 weak,自定义 IBOutlet 控件属性一般也使用 weak;当然,也可以使用strong。

  • 不同点:

weak 此特质表明该属性定义了一种“非拥有关系” (nonowning relationship)。为这种属性设置新值时,设置方法既不保留新值,也不释放旧值。此特质同assign类似, 然而在属性所指的对象遭到摧毁时,属性值也会清空(nil out)。 而 assign 的“设置方法”只会执行针对“纯量类型” (scalar type,例如 CGFloat 或 NSlnteger 等)的简单赋值操作。

assign 可以用非 OC 对象,而 weak 必须用于 OC 对象

如何让自己的类用copy修饰符?如何重写带copy关键字的setter?

需声明该类遵从 NSCopying 协议

实现 NSCopying 协议。该协议只有一个方法:

1
- (id)copyWithZone:(NSZone *)zone;
  • 重写带 copy 关键字的 setter,例如:
1
2
3
4
- (void)setName:(NSString *)name {
//[_name release];
_name = [name copy];
}

深拷贝与浅拷贝分别是什么?

浅拷贝只是对指针的拷贝,拷贝后两个指针指向同一个内存空间,深拷贝不但对指针进行拷贝,而且对指针指向的内容进行拷贝,经深拷贝后的指针是指向两个不同地址的指针。

当对象中存在指针成员时,除了在复制对象时需要考虑自定义拷贝构造函数,还应该考虑以下两种情形:

  • 当函数的参数为对象时,实参传递给形参的实际上是实参的一个拷贝对象,系统自动通过拷贝构造函数实现;
  • 当函数的返回值为一个对象时,该对象实际上是函数内对象的一个拷贝,用于返回函数调用处。

copy方法:如果是非可扩展类对象,则是浅拷贝。如果是可扩展类对象,则是深拷贝。

mutableCopy方法:无论是可扩展类对象还是不可扩展类对象,都是深拷贝。

@property的本质是什么?ivar、getter、setter是如何生成并添加到这个类中的?

  • @property 的本质是实例变量(ivar)+存取方法(access method = getter + setter),即 @property = ivar + getter + setter;

“属性” (property)作为 Objective-C 的一项特性,主要的作用就在于封装对象中的数据。 Objective-C 对象通常会把其所需要的数据保存为各种实例变量。实例变量一般通过“存取方法”(access method)来访问。其中,“获取方法” (getter)用于读取变量值,而“设置方法” (setter)用于写入变量值。

  • ivar、getter、setter 是自动合成这个类中的

完成属性定义后,编译器会自动编写访问这些属性所需的方法,此过程叫做“自动合成”(autosynthesis)。需要强调的是,这个过程由编译 器在编译期执行,所以编辑器里看不到这些“合成方法”(synthesized method)的源代码。

除了生成方法代码 getter、setter 之外,编译器还要自动向类中添加适当类型的实例变量,并且在属性名前面加下划线,以此作为实例变量的名字。在前例中,会生成两个实例变量,其名称分别为 _firstName 与 _lastName。也可以在类的实现代码里通过 @synthesize 语法来指定实例变量的名字.

@protocol和category中如何使用@property

我们创建了一个iOS开发生态交流群,iOS技术职业交流覆盖 2800+技术牛人,
直接搜索或点击群号:638302184,快速进群,我们期待您的加入!

  • 在 protocol 中使用 property 只会生成 setter 和 getter 方法声明,我们使用属性的目的,是希望遵守我协议的对象能实现该属性
  • category 使用 @property 也是只会生成 setter 和 getter 方法的声明,如果我们真的需要给 category 增加属性的实现,需要借助于运行时的两个函数:objc_setAssociatedObject和objc_getAssociatedObject

使用CADisplayLink、NSTimer有什么注意点?

  • CADisplayLink、NSTimer会造成循环引用,可以使用YYWeakProxy或者为CADisplayLink、NSTimer添加block方法解决循环引用

BAD_ACCESS在什么情况下出现?

  • 访问了悬垂指针,比如对一个已经释放的对象执行了release、访问已经释放对象的成员变量或者发消息。 死循环

iOS内存分区情况

  • 栈区(Stack)

由编译器自动分配释放,存放函数的参数,局部变量的值等

栈是向低地址扩展的数据结构,是一块连续的内存区域

  • 堆区(Heap)

由程序员分配释放

是向高地址扩展的数据结构,是不连续的内存区域

  • 全局区

全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域

程序结束后由系统释放

  • 常量区

常量字符串就是放在这里的

程序结束后由系统释放

  • 代码区

存放函数体的二进制代码

注:

  • 在 iOS 中,堆区的内存是应用程序共享的,堆中的内存分配是系统负责的
  • 系统使用一个链表来维护所有已经分配的内存空间(系统仅仅记录,并不管理具体的内容)
  • 变量使用结束后,需要释放内存,OC 中是判断引用计数是否为 0,如果是就说明没有任何变量使用该空间,那么系统将其回收
  • 当一个 app 启动后,代码区、常量区、全局区大小就已经固定,因此指向这些区的指针不会产生崩溃性的错误。而堆区和栈区是时时刻刻变化的(堆的创建销毁,栈的弹入弹出),所以当使用一个指针指向这个区里面的内存时,一定要注意内存是否已经被释放,否则会产生程序崩溃(也即是野指针报错)

iOS内存管理方式

  • Tagged Pointer(小对象)

Tagged Pointer 专门用来存储小的对象,例如 NSNumber 和 NSDate

Tagged Pointer 指针的值不再是地址了,而是真正的值。所以,实际上它不再是一个对象了,它只是一个披着对象皮的普通变量而已。所以,它的内存并不存储在堆中,也不需要 malloc 和 free

在内存读取上有着 3 倍的效率,创建时比以前快 106 倍

objc_msgSend 能识别 Tagged Pointer,比如 NSNumber 的 intValue 方法,直接从指针提取数据

使用 Tagged Pointer 后,指针内存储的数据变成了 Tag + Data,也就是将数据直接存储在了指针中

  • NONPOINTER_ISA (指针中存放与该对象内存相关的信息) 苹果将 isa 设计成了联合体,在 isa 中存储了与该对象相关的一些内存的信息,原因也如上面所说,并不需要 64 个二进制位全部都用来存储指针。

isa 的结构:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
// x86_64 架构
struct {
uintptr_t nonpointer : 1; // 0:普通指针,1:优化过,使用位域存储更多信息
uintptr_t has_assoc : 1; // 对象是否含有或曾经含有关联引用
uintptr_t has_cxx_dtor : 1; // 表示是否有C++析构函数或OC的dealloc
uintptr_t shiftcls : 44; // 存放着 Class、Meta-Class 对象的内存地址信息
uintptr_t magic : 6; // 用于在调试时分辨对象是否未完成初始化
uintptr_t weakly_referenced : 1; // 是否被弱引用指向
uintptr_t deallocating : 1; // 对象是否正在释放
uintptr_t has_sidetable_rc : 1; // 是否需要使用 sidetable 来存储引用计数
uintptr_t extra_rc : 8; // 引用计数能够用 8 个二进制位存储时,直接存储在这里
};

// arm64 架构
struct {
uintptr_t nonpointer : 1; // 0:普通指针,1:优化过,使用位域存储更多信息
uintptr_t has_assoc : 1; // 对象是否含有或曾经含有关联引用
uintptr_t has_cxx_dtor : 1; // 表示是否有C++析构函数或OC的dealloc
uintptr_t shiftcls : 33; // 存放着 Class、Meta-Class 对象的内存地址信息
uintptr_t magic : 6; // 用于在调试时分辨对象是否未完成初始化
uintptr_t weakly_referenced : 1; // 是否被弱引用指向
uintptr_t deallocating : 1; // 对象是否正在释放
uintptr_t has_sidetable_rc : 1; // 是否需要使用 sidetable 来存储引用计数
uintptr_t extra_rc : 19; // 引用计数能够用 19 个二进制位存储时,直接存储在这里
};

这里的 has_sidetable_rc 和 extra_rc,has_sidetable_rc 表明该指针是否引用了 sidetable 散列表,之所以有这个选项,是因为少量的引用计数是不会直接存放在 SideTables 表中的,对象的引用计数会先存放在 extra_rc 中,当其被存满时,才会存入相应的 SideTables 散列表中,SideTables 中有很多张 SideTable,每个 SideTable 也都是一个散列表,而引用计数表就包含在 SideTable 之中。

  • 散列表(引用计数表、弱引用表)

引用计数要么存放在 isa 的 extra_rc 中,要么存放在引用计数表中,而引用计数表包含在一个叫 SideTable 的结构中,它是一个散列表,也就是哈希表。而 SideTable 又包含在一个全局的 StripeMap 的哈希映射表中,这个表的名字叫 SideTables。

当一个对象访问 SideTables 时:

  • 首先会取得对象的地址,将地址进行哈希运算,与 SideTables 中 SideTable 的个数取余,最后得到的结果就是该对象所要访问的 SideTable
  • 在取得的 SideTable 中的 RefcountMap 表中再进行一次哈希查找,找到该对象在引用计数表中对应的位置
  • 如果该位置存在对应的引用计数,则对其进行操作,如果没有对应的引用计数,则创建一个对应的 size_t 对象,其实就是一个 uint 类型的无符号整型
  • 弱引用表也是一张哈希表的结构,其内部包含了每个对象对应的弱引用表 weak_entry_t,而 weak_entry_t 是一个结构体数组,其中包含的则是每一个对象弱引用的对象所对应的弱引用指针。

循环引用

循环引用的实质:多个对象相互之间有强引用,不能释放让系统回收。

避免产生循环引用,通常是将 strong 引用改为 weak 引用。 比如在修饰属性时用weak 在block内调用对象方法时,使用其弱引用,这里可以使用两个宏

1
#define WS(weakSelf) __weak __typeof(&*self)weakSelf = self; // 弱引用

2、在合适时机去手动断开循环引用。 通常我们使用第一种。

  • 代理(delegate)循环引用属于相互循环引用

delegate 是iOS中开发中比较常遇到的循环引用,一般在声明delegate的时候都要使用弱引用 weak,或者assign,当然怎么选择使用assign还是weak,MRC的话只能用assign,在ARC的情况下最好使用weak,因为weak修饰的变量在释放后自动指向nil,防止野指针存在

  • NSTimer循环引用属于相互循环使用

在控制器内,创建NSTimer作为其属性,由于定时器创建后也会强引用该控制器对象,那么该对象和定时器就相互循环引用了。 如何解决呢? 这里我们可以使用手动断开循环引用: 如果是不重复定时器,在回调方法里将定时器invalidate并置为nil即可。 如果是重复定时器,在合适的位置将其invalidate并置为nil即可

block循环引用

1
2
3
4
5
__weak typeof(self) weakSelf = self;

self.myBlock = ^() {
NSLog(@"%@",weakSelf.blockString);
};

并不是所有block都会造成循环引用。 只有被强引用了的block才会产生循环引用 而比如dispatch_async(dispatch_get_main_queue(), ^{}),[UIView animateWithDuration:1 animations:^{}]这些系统方法等 或者block并不是其属性而是临时变量,即栈block

还有一种场景,在block执行开始时self对象还未被释放,而执行过程中,self被释放了,由于是用weak修饰的,那么weakSelf也被释放了,此时在block里访问weakSelf时,就可能会发生错误(向nil对象发消息并不会崩溃,但也没任何效果)。

对于这种场景,应该在block中对 对象使用__strong修饰,使得在block期间对 对象持有,block执行结束后,解除其持有。

1
2
3
4
5
6
7
8
__weak typeof(self) weakSelf = self;

self.myBlock = ^() {

__strong __typeof(self) strongSelf = weakSelf;

[strongSelf test];
};